Quantcast
Channel: 観光列車から! 日々利用の乗り物まで
Viewing all articles
Browse latest Browse all 3251

「はやぶさ2」小惑星探査機(JAXA)

$
0
0

はやぶさ2は、小惑星探査機「はやぶさ」(第20号科学衛星MUSES-C)の後継機として宇宙航空研究開発機構 (JAXA) で開発された小惑星探査機である。地球近傍小惑星 「リュウグウ」への着陸およびサンプルリターンが計画されている。「はやぶさ2」という名称は探査機を用いる小惑星探査プロジェクト名にも使われている。

2014年12月3日に種子島宇宙センター大型ロケット発射場からH-IIAロケット26号機で打ち上げられた。

世界で初めて小惑星の物質を持ち帰ることに成功した探査機「はやぶさ」の後継機で、初号機が小惑星往復に初めて挑んだ「実験機」だったのに対し、有機物や水のある小惑星を探査して生命誕生の謎を解明するという科学的成果を上げるための初の「実用機」として開発された。

基本設計は初代「はやぶさ」と同一だが、「はやぶさ」の運用を通じて明らかになった問題点を改良した準同型機である。サンプル採取方式は「はやぶさ」と同じく「タッチダウン」方式であるが、事前に爆発によって衝突体を突入させて直径数メートルのクレーターを作ることによって深部の試料を採取できるようにする。採取した物質は耐熱カプセルに収納されて地球に回収される。着陸用小型ローバーの「ミネルバ2」(2-1A, 2-1B, 2-2の計3基)、およびドイツとフランスが開発した小型着陸機「マスコット」も搭載されている。


先代が航行途中にトラブルに見舞われたため、安定航行を目的としてさまざまな変更がおこなわれた。「はやぶさ」のようなパラボラアンテナに代わり、「あかつき」と同様の高利得平面アンテナ(スロットアレイアンテナ)を使用し、破損があった化学燃料スラスタ配管の再検討や制御装置であるリアクションホイールの信頼性向上などの改良が行われた。イオンエンジンはμ10の推力を 8 mN から 10 mN へと向上させた改良型を使用する。

また、試料を取るための方法も大幅に改良される。まず新機能として、小惑星表面だけでなく小惑星内部の砂礫の採取のための衝突装置 (SCI:Small Carry-on Impactor) を搭載する。SCIは成形炸薬を内蔵しており、探査機本体から切り離された後本体が小惑星の陰に隠れる約40分後に起爆、重さ 2 kg の純銅製衝突体を爆圧によって変形させつつ目標天体に衝突させ、クレーターを作る。このクレーター内または周辺で試料を採取することにより小惑星内部の調査が可能となる。JAXAとしてこのような構造を持つ探査機は初めて[要出典]。SCI 全体の質量が 18 kg、爆薬の質量は 4.7 kgある。銅板の質量は 2.5 kg だが、発射時に一部がちぎれて弾丸としては約 2 kg になる[要出典]。衝突体の衝突時には本体は小惑星の裏側へ退避するため、衝突の様子を撮影するためにDCAM3と名付けた分離カメラを装備している。

初代はやぶさのように試料採取用の筒(サンプラーホーン)を小惑星の表面に当て、内部でプロジェクタイルと呼ばれる弾丸を打ち出し、それを小惑星表面に当てることで舞い上がった砂礫を採取する。プロジェクタイルの形状は「はやぶさ」の弾丸型から円錐型へと変更される。頂点の角度は90度に設定されており、プロジェクタイルが3g以上の質量をもつ場合には弾丸型よりも効率的な試料採取が可能となる。もし初号機と同じように弾丸が発射されなくてもサンプルを引っ掛けて持ち上げられる仕組みも追加された他、サンプルから発生したガスも採取できるように改良されている。2014年11月には、NASAのオシリス・レックスが小惑星で採取したサンプルとはやぶさ2が採取するサンプルを相互に提供し合うことで合意した。はやぶさ2には、サンプラホーンの先端を撮るカメラCAM-Cも搭載されており、これはJAXAへの寄付金で作られた。

満身創痍での運用となった初代と比べ、確実に運用する為の改良が行われた。たとえば、初代はやぶさにおいてイトカワに着地させることが出来なかった「ミネルバ」(着地探査ローバー)の搭載数は、1基から3基に増加、ドイツ航空宇宙センターとフランス国立宇宙研究センターが共同開発した着陸ローバー「マスコット」(MASCOT, Mobile Asteroid Surface Scout)と併せて運用される。同じく初代では信頼性強化の改造が裏目となり、3基中2基が運用不能となったリアクションホイールも3基から4基へと増加され、なおかつ最後の1基はなるべく着陸時までは温存するため、はやぶさ帰還時の運用経験を活かし可能な限り一基のリアクション・ホイールと太陽光圧を利用した運用を行っている。また、新たにKaバンド(32GHz帯)の高速通信が可能な平面アンテナを従来のXバンド(8GHz)アンテナに追加したことで、全般的な高速通信速度が可能な中で、極限時の指令運用(完全自律判断によるタッチダウンと比べた場合指令誘導とすると極端な高速化ができる)をより速やかに図ることができるようになった(従来のパラボラアンテナを小型軽量の平面アンテナに変えて同一面に2枚のアンテナを配置できた)。さらに、目標小惑星であるリュウグウが、自転速度7時間半長径920mのほぼ球形で、何より自転軸が黄道面に対して横倒しに近く、それが垂直であったイトカワが12時間の自転毎に天体全面を観察できた事と比べて極めて効率が悪いため、イトカワでの3ヵ月に比べて6倍にあたる1年半を費やして調査することにしている。

探査計画
「はやぶさ」がS型小惑星である (25143) イトカワを探査したのに続いて「はやぶさ2」ではC型小惑星であるアポロ群の (162173) リュウグウを探査対象とする。リュウグウは、現在軌道が判明している46万個の小惑星のうちスペクトル型が判明している3000個の物の中から、はやぶさクラスの推進力で探査可能でスペクトルがC型であり、タッチダウン運用が可能な自転6時間以上の対象としてほぼ唯一の候補に挙げられた。2014年は極めて望ましい打ち上げ期間(ウインドウ)であり、次回のウインドウは10年後となる。

はやぶさ2計画には新たな生命の起源についての新たな知見をもたらす可能性がある。アミノ酸は探査機スターダストで以前にも彗星の尾から採取されているが、はやぶさ2が目指すリュウグウはC型小惑星と呼ばれる炭素を多く含む炭素質コンドライト隕石と似た物質で出来ていると考えられる小惑星で、一部の炭素質コンドライトと同様に有機物を含有する可能性がある。地球近傍に存在する小惑星が有機物を含むことが実証されれば、これらが隕石として地球に落ち生命の起源に寄与したという仮説が成立することとなる。

 

2014年11月30日に打ち上げ予定が設定されたが、天候不良によって12月1日に延期され、ついで12月3日に再延期された]。
2014年12月3日13時22分、H-IIAロケット26号機により打ち上げ。その後、イオンエンジンやKaバンド通信系などの初期のチェックアウトを順調に終了。
2014年12月5日、本体および地上系一連の健全性を確立するクリティカル運用終了。
2015年3月3日、巡航フェーズへ移行。
2015年12月3日、地球スイングバイを実施。
2018年2月26日、小惑星リュウグウの点像を撮影(距離約130万km)。
予定
2018年6月から7月ごろ、小惑星リュウグウに到着、約18ヶ月間滞在する予定。
2020年末、地球へ帰還する予定。

所属 JAXA
主製造業者 NEC
公式ページ 小惑星探査機「はやぶさ2」
国際標識番号 2014-076A
カタログ番号 40319
状態 運用中
目的 C型小惑星からのサンプルリターン
観測対象 リュウグウ
設計寿命 7年
打上げ機 H-IIAロケット26号機
打上げ日時 2014年12月3日13時22分04秒
ランデブー日 2018年(予定)
物理的特長
本体寸法 1.0m × 1.6m × 1.25m
質量 600kg
主な推進器 μ10
姿勢制御方式 三軸制御方式


Viewing all articles
Browse latest Browse all 3251

Trending Articles